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ABSTRACT

The paper presents an algorithm for solving the zero-one
integer programming problem. In contrast to the usual approach,
which reduces the problem to finding the optimal values for variables
restricted to values of zero and one, we view the problem as finding
an optimal map among a class of mappings of one finite set into
another, The basic approach is to characterize the statistical
structure of the finite class of maps., Our technique consists
of trying to identify the optimal feasible map in a class of
maps, by introducing random variables as functionals on the class
of maps., We derive explicitly the statistical properties of the
class of maps associated with the zero-one integer programming
problem. Using the mean and variance-covariance matrix the idea

of confidence level enumeration is developed.




A NEW APPROACH 7O DISCRETE MATHEMATICAL PROGRAMMING
by

G. Graves and A, Whinston

Introduction

We shall present in this paper an algorithm for solving

the fol.owing problem:

(1) s.t. rjaid’fj <b i=1,2,...,m

The above linear integer programming problem is a specialization of

the following:

Min. }fJQt J)

(2) (x) < b1 i=1,2,...,m

850

}

x€l = {(0,1,2,......5
J J [ » ’ ’ J
Note that no conditions such as convexity or differentiability are
imposed on the function. The algorithm to be outlined below can
be used to solve problem (2). However, for purposes of exposition

it is convenient to deal with problem (1)}
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This paper presents the theoretical foundations for a
new approach to integer programming. On the basis of the
theoretical arguments, various specific computational procedures
are Jeveloped which could be used to solve the integer programming
problem. However, definitive computational results are not

presented. In future papers we plan to explore the various

computational options developed here.

The literature devoted to presenting methods tor solving
problem (1) 1_ very extensive. A comprehensive survey nas been
presented by Balinski (2 ]J. Roughly speaking the approaches to h

this problem can be divided into three groups. The first point

of view initiated by Gomory involves generating the convex hull

of the integer problem and then employing linesr programming

techniques. An elegant theory has been developed by Gouory

to demonstrate, among other things, finite convergence. However,

the computational experience with the method has proved incon-

clusive. This seems to be especially true for larger problems.2
The second approach can be characterized, in general,

as an enumerative-combinatorial approach to the problem. Many

researchers have made contributions to developing this theory.

An early paper of Gilmore [ 5 | presented an algoritim for the

quadratic assignment problem within this framework. Recently
vork by Balas [1 | and Glover { 6 | has developed an elegant
enumerative al-corithm to solve a linear integer problem.

Basically the method involves an intelligent search through
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all possibilities. The ability to develop methods of excluding
largze numbers of possible solutions is the critical element in
this approach, To this end bounds are developed in order to
exclude solutions which would never be feasible or optimal.
However, computational experience tends to suggest that because
the bounds are not sufficiently informative at early stages of
the computation, large problems cannot be handled. Roughly
speaking problems where the number of variables exceeds 20
ca' not be effectively solved.

A third approach has been developed by Reiter and
Sherman (10]). They have used statistical sampling techniques
combined with methods for finding local optima., This approach
appears to be quite effective for unconstrain:d probiems. For
the case where the problem hac constraints, a large number of
the samples may have to be rejscted because of infeasibility,

The approach to be duveloped here might be concidered
an extension of the methods using enumeration., Ilnstead of
relying on lower bounds to truncate the process, we will
introduce a new more powerful approach based on population
statistics, The use of population statistics should not be
confused with the sampling statistics or random search
procedure described above.

Compucational Scheme

This section will outline the computational scheme used

in solving the problem. Typically, integer programming problems




are considered from the point of view of finding the optimal
integer values for a vector of variables. We shall view the
problem in a different light - as one of selecting the optimal
function among a certain class of functions which map elemeats
of one set into another. For the type of problems discussed
in this paper the class of functions is finite. A function or
map is characterized by the way it assigns elements of one set
to another set., By a kth partial map we shall mean the subcet
of all functions which agree for some particular set of k eloments
of the domain of the nap::. The 1raps in thi: class will differ
in the way they assign to the remaining elements in the domain,

The integer prozramming problem can then be formulated
as selecting from among the set of admissible maps the one which
maximizes a linear functional, Note that not all maps would be
admissible because of the constraints on the problem,

For the zero-one integer programming problem we may
characterize the functions as those which map the
integers I = (1,...n} onto the set (0, 1}. There are 2"
such functions,

It is clear that one way of solving the problem is
to enumerate all possible maps. As pointed out above this is
obviously impractical. The first modification of a complete
enumeration is to implicity enumerate all solutions. Thic
simply means that in the course of our enumeration, certain

subsets of maps can be ruled out without explicit examination,




There is sufficient information to show that these subsets could
not contain a feasible optimal solution, These subsets are said

to be implicitly enumerated.

In constructing an implicit enumeration scheme, there
are four basic parts of tne pii-adure;

1) A compact flexible enumerative scheme

27) Truncation by feasibility

3) Truncation by optimality

4) Selection of the next element to add to a

partial specification of the mapping

Let us consider the idea of an enumerative scheme in
the context of the above development. An enumerativa scheme 1is
a systematic way of generating all of the maps. It indicates
which maps have been already generated and, of course, which
ones remain to be enumerated, One enumerative procedure would
be to simply list all maps that have been examined. However,
for any reasonably sized problem, the number of possible maps
would be too large. Simple listing would be impossible
because of the enormous memory requirement, Thus a good
enumerative scheme mu.t allow for a compact representation
of the required information, In addition to compactness,
flexibility in the choice of successive maps it extremely
valuable, For example, consider the following possible way
of recording maps for the present problem. Start with the
zero vector and add the number 1 successively in binary

form until all binary vectors have been generated. Since
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& map can be uniquely representec by an n-vector of zeros and
ones, this would enumerate all maps in a compact manner while
indicating tlie number of solutions already tried. However,
this scheme, while extremely compact, does not allow any
flexibility of choice.

Within the class of enumerative schemes which allow
for a compact storage, one should strive for a scheme¢ which
allows for maximal freedom in the sequence of successive maps
generated. We thus present a general, flexible compact scheme
for generating all admissible mappings of the set S into R,
While below we present the procedure in a rather abstract manner
the ideas underlying it are quite natural., One of the earliest
uses of such ideas is due to Tarry (11] in his algorithm for
finding a path through all vertices of a rooted graph. We
proceed in the followin; manner where the steps follow con-
secutively, unless indicated:

0. Initislize by setting k=l and determine S1 and Rl according
to a specified rule, perhaps determined by feasibility.
1, It Rk is empty go to 7
2. Select any elements
is €Sk
j* eak
Set 1 =i* and j =j* and Rk=Rk-[J‘]
3. If k=n go to 11

4, Set k+l=k




5. Determine sk and Rk according to some specified rule,
perhaps determined by feasibility

6. Go to 1l

7. If k=1 stop

8. Set k-l=k

9, It Rk is empty go to 7

10. Select any element j* ch'A Set Jk'J‘ to go with the
current 1k and set kang-J‘ and go to 3

11. Record the current mapping

12. Go to 9

In the present case we take S=S. = (1,2,...n},

1
R=R. = (0,1) and in Step 5 we set

1
k-1
sk-s-“& lt

R =(0,1)
These choices generate the desired maps. With the above specifi-
cation the general enumerative scheme given here reduces to one
proposed by Glover [ 6 ] to solve the 0-1 integer programming
problem.
Another application of the general enumerative scheme
is to the generation of all n! permutations of the integers

I=(1,2,...n}. For this application we set S=8. = (1,2,...n},

1

n-al = {1,2,...n) and in Step 5

-1
Skas-:gi it

k-1
Ry=l-.t1 3¢



A varlant of this mapping scheme was used to solve the quadratic
assignment problem a: given in (8] .

Step two in the enumerative scheme involves the selection
k-1
t

Ji
t=]t

of a particular variable, i.e.; an element from the set S-
and its assignment to either the element zero or one.
Because of the powerful selection mechanism to be developed
below, the flexibility of being able to select the variable is
not needed in the present application. The order in which we
treat the variables will be fixed. The enumerative procedure
1s altered slightly to account for this change. Let (11,,.1n]
be an ordering of the integers (1,2,...n). Then set Slz[ill,
82-{12] .. Sn=(1n). By renumbering the variables we may assume
that sla[ll, Sza[al,...sn=[n].

The enumerative procedvre has the effect of transforming
the integer programming problem into an n-stage decision problem.
At the kth stage of the algorithm we have to decide what value

to assign the variable x There are two considerations,

K*
First the local or immediac¢~ effect of setting X, to a value.

=] the criterion value is increased by c¢_ (our

By setting x K

k

immediate cost) and each constraint is altered by the value aik'

The alternative choices of zero or one for xk determine
alternative subsequent problems in which possible choices for

. This

...xn are differently restricted because of the LI

xk+1

second factor, the potential future cost, 1s the crucial factor,

What is the cost of the alternative restrictions on the subsequent

?

possible assignment of values for the remaining xk+1"'xn




If one were able to evaluate the second factors exactly
it would be possible to assign at each step the correct value and
solve the problem exactly in n steps. This is, of course, not
possible, The next best thing to knowing exactly the values of
the completions is 0 know them almost surely. The use of
probability usually enables us to obtain very good information
at a fraction of the cost of obtaining exact information. It
is to capitalize on this that we develop the present approach,

It should also be observed that in the large scheduling and
allocation problems for which this algorithm is intended, the
uncertainties in the underlying data reduce attempts to obtain
the exact optimal solution with certainty to pedantry.

What is required for present purposes is the probability
distribution of the values of the linear functionals over the
discrete sample space of the remaining 2n-k completions of the
current k-partial map. Although it is impossible to obtain
the exact multivariate distribution desired without complete
enumcration, the really useful fact is that we can obtain the
vector of means and covariance matrix of this distribution
exactly and an asymptotic approximation to the distribution,

Statistical Properties of the Problem

Let xJ be random variables which have the following
probability distributions:

1/2 and

Pr(xJ=1)

P =0
r(xJ )

and further assume the x, to be independent.

J

1/72




10.
n
Then zi = §;laijxj is also a random variable whero[aij} is any
set of real constant: . The means variances, and covariances
of linear functions of random variables are well known.
M(31)=§8UHJ
2 2 2
A(B) = % 24
1 7 1157 &.
and,
c(8 ,8) || = || & e .a
e8Il = 1l F5oay, a,
where
2 2
t.. = E(x ) = E(x_ 4 ) and
j s ] 3T
c(g_,% ) = E((8 4 (3 )(& 4+ (B )]
P’ q [ P P g q
<
Now in our particular case since LJ=1/2 and 3 =1/4
these formulas reduce to:
z = o 30
u(ai) 1/2 jaij
2, 2
n(hi)_l/fl §a i
and,
c(Z2 ,% ) =1/4 a_ . .a .
| ey =14 |l S a |
Further, the 31 are sums of independent random varlables. Taking
‘ i 2
X = 8, %), then L(xik) = aik/2 and ~ (xik) =j a 1%/4 and
_ B R . p e -
2. . ki Xyk+ The Lindeberg theorem [3 ] states: Let x N
;‘12,... be mutually independent one-dimensional random variables
with distributions Fl, F:... . Assume E(x 1k)=0 [e.g x1k=x1k-E(xik)]
Z 2 < 2
d t 1 = o ) ¥ .
and put o (éin) &7 (xil) + 0 (xiz), + (xin)
Assume that for each t >
1 ! < F. (dy] =0
lim ¢ f AT
———— —
n-= < ~ (Zln) ] -
&
k=
1 y] 2t ~"@ )
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then the distribution of the normalized sum

g = Z1!‘1-E(zin)

in —_————
g (ain)
tends to the normal distribution N (0,1)."
Now assuming all the aik ar> from a bounded set, since i

2 y2 . fdy)
a (Zin)“ ® as n~ © for any t > O the integrals f K 0 l

lyl> ¢t = (Etn)

for sufficiently large n, and tine required condition for the {

Lindetarg theorem i1s satisfied. The fact that for large numbers

of variables, g‘ = Ei } E(zi)
3(8,)

one to estimate the minimum values of the 51 almost surely as

is approximately normal, enables

follows: Pr[B < ca} = ¢ 1s readily obtainable from normal tables
for any confidence level @. Hence, Pr[zisE(zi) + cao(Ei)] = Q
is available for each of the Zi.

The above results can be extended to obtain confidence
level statements about the joint or coupled behavior of the 81.
The Lindeberg Theorem is readily extended to show that the vector

~ ~

(Zl, 12,...,5;) is asymptutically multivariate normal.4

Confidence Level Implicit Enumeration

In the course of the underlying enumeration it is
necessary to apply the results of tne previous section to the
truncated ranuom variables dictatcd by the successive fixing of
elements of the map. To this purpose, we introduce the following
definitions:

k) = : : X ST
8, (k) T4 kel kel T Mke? ket A ynn

for 1 < k < n and Ei(n) = 0,




A
2(k) =a x_ +a, x + a X e
1 1171 Y Bo%e ot By k1 ke
A
for 1<k<n and 31(1) =0
where (;1 ;2 "";k-l) are the already chosen fixed values for
. 1 ’
these variables.
The criterion function is designated 8 = Cc X +C _X_+...+C X
c 1=, 272 nn

As 1s customary in the zero-one problem, we assume that the

c. > 0. This does not restrict complete generality inasmuch as

J

the simple translation of variables x 6 = l-xJ for thre cJ < 0 will

J

insure this condition.

The most elementary use of the statistical properties
developed in the previous sections is to supplemert the bounds
employed in the deterministic implicit enumeration as expounded by
Balas, Glover and others. To see how this can be done, let us
recapitulate the use of bounds for implicitly enumerating. Take

2, (k) quf a,, wrkere s = (3 | o,y <0 and k< J <n)

and clearly Ei(k) > E:(k). Now for a fcasible solution
!

2, =B, () +a,x +8(k)<b

1 ik k i

or
2 (k - - X =
SRRSO R SR AL
So the possible completions of the partial map are implicitly
enumerated 1f for neither value of xk is

“(K) < -z L .

3,000 < b - B )-a,
while the value of e is fixed if tne inequality holds for one value
but not the other. The above argument applies as well to the

»

criterion function when b1 1s replaced by SC the best known

feasible value, with the adcditional fact that SZ:% and hence

g (k)=0,
C




13,
The simplest use of the statistical properties of our
problem would then be to use the estimated minimum
Zi(k) = E(Zi(k))+ can(Ei(k)
in place of the absolute bound b:(k) in the above argument., The
possible completions of the partial map are then implicitly

enumerated with a confidence level of &@. Confidence level implicit

enumeration is an agreement not to check further those subsets of

maps that have less than a% chance of containing a better feasible

solution., It should be noted that by 1ts construction Zi(k) is a

n-K
random variable on the finite sample space of the remaining 2

1
completion maps with equal probability of = for each map.

A 2
Now Vi(k)zbi-zi(k)-a establishes a cutoff value (with a choice

1Kk
th

of a value for xk) for a feasible solution of the 1 constraint,

By fixing @ end calculating the corresponding critical value

si(k) from the normal distribution if Si(k) > Vi(k), we can then

infer the probability (or relative frequency) of the maps that

would yield feasible solutions to the ith constraint is less than

a. By considerin; all of the constraints jointly, the probability

that a feasible map could be found would be diminished. Schematically

tihe situation would appear as follows(see fig. 1):

wa » P - [ \\‘\\
v ?'fvl l

i
V1 ni(k)

The total shaded area contains 29 of the maps and the area to the

left of Vi(k) contains less than % of the maps. It should be

R



14,
observed that the truncation of the tails of the normal distribution
because of our finite space approximation would cause the variances
to be over estimated and hence make the procedure even more con-
servative, In fact as k approaches n and the normal approximation
becomes less valid the procedure will undoubtedly automatically
merge into the deterministic one where only the absolute bounds
will cut.

A more advanced use of the statistical properties of the

problem, which would undoubtedly yield much greater cutting power,
would be to implicitly enumerate subsets of maps which bhave low
percentages of maps which satisfy the constraints pairwise.
Relying on the fact that any pair of the random variables Ei(k)
and EJ(k) has an asymptotic bi-var-iate normal distribution, we
can use the conditional probability distribution of ZJ(k) given
%i(k). In this instance Z (k) is asymptotically normally

J
distributed about

C(Ei(k),zj(k))
-y (B, (0= E& (1) : ( ai(k)_E(Ei(k);j oith
) (8, (1)) - .
2
7 ~ f -
variance Pj.i = 72(5J(k)) ) K}_ C(Zi(ﬂ), EJ(k)) .

”(Ei(k))v(zj(k))”

The conditional distribution of ZJ(k) depends on the particular
value of Zi(k) chosen. For the purpose of obtaining a critical
point we may choose a realizable value of %J(k) which pgives the
lowe:t and, therefore, weakest critical value. Now for

c(zi(k), EJ(k)) < 0 the minimum value of Mj(Zi(k)) occurs by




15.
vsing
N
Y(1) = min /Z:(k),VL/ for 8 (k) where

and SI = {p | aip >0 and k < p < n}.

+
= %
B, G0 pégl 1k

With c(Bl(k),Z (k)) > O the minimum value of u(Bi(k)) occurs by

J
using Y(1) = Bi(k).

In either instance one can use 85'(k;1) = _(Y(1)) + <, 3.4

1
in place of ZJ(k) in the preceding arguments. For each variable
,(), 1 7 J, a critial point ej'(k,i) is obtained. Let

EJ’(k) denote the maximum value, This value constitutes the best
bound obtainable using the constraints pairwise. In practice,

of course, the critical points would be generated sequentially.
At each step, the algorithm checks whether the critical point
exceeds Vi(k) or not.

The most general use of the statistical properties of
the problem would be to calculate directly the probability of the
set of completion maps which simultaneously satisfy all the
constraints and yield a hetter value of the criterion function
than currently known, This would be,

Pr(z (K1<V (k)3 (k) 2V, (K),....,2 (K) <V (K]

Theoretically, for each choice of a value for x tnis probability

K’
can be calculated approximately from the asymptotic multivariate
normal distribution., 1In practice although conciderable research
has been done on the cubject over a large period of time, there
does not appear to be effective means of computing directly

o

thi. probability beyond the bi-variate case.o




In terms of the overall algorithm, information from

the above tests iy used in step 5. If, when setting x =1, we

k
determine by use of the bounds that a possible completion is to
be ruled out we set Rk=Rk-(1}. Similarly, in the casc where
xk=0 1s tested, we set Rk=Rk—[0]. If we could compute the rmulti-
variate normal then we rule out either or both values 1if their
respective probabilities are less than a confidence level .,
Consider the case where neither value can be ruled
out., Step two in the enumerative scheme calls for mapping the
element i*=k into ar elcment j* {0,]}=Rk. This, of course,
corresponds to relecting a value for N of zero or one. Note
that either choice :hould lead to an improve. feasible solution,
While tne cnumerative :cheme guarantees tnat if necessary botn
values will be checiked, it is important for computational
efficiency to make a judiciou: cnoice, By making a choice which
leads to a feasible solution with a lower value, we obtain a
sharper cut-off point, This cut-off point allows, 1n subsequent
generation of maps, the implicit enumeration of larger subsets
of maps tnan would be possible if a feasible, but higher value
of the criterion 1tinction is obtained. 1In order to achieve this

we elect to check fir:t that subset of maps which contains a

larger proportion of improvcd feauible solutions.

16,




17.

Conclusion

As 1s well known, many problems in combinatorial
programming can be reduced to problems in variables restricted
to the values zero and one by various artifices. The attempt
to convert these problems to integer mathematical programming
pProblems by introducing large numbers of structural constraints
on the variables has not proved computationally effective.
Combinatorial programs, almost by definition are associated with
maps of one finite set into another and thus generate a finite
class of maps which can be enumerated by the general algorithm
presented here. It is our intention to attack these different
problems by characterizing the statistical structure of the
associated finite class of maps. Our technique consists of
trying to identify the optimal feasible map in a class of maps
by introducing random variables as functionals on the class of
maps.

In an earlier paper [g;] the authors have applied the
above ideas to a different type of mapping scheme. Some pre-
liminary computational results were given in that paper. Future
papers will develop other types of maps and their statistical
properties and show how these maps can be used to solve

important industrial problems.



?
¥
i 6.
FOOTNOTES
1, For a discussion of methods of transforming problem (2)
into the form of problem (1) see [1].
2. See:.g. [5] for a presentation of Gomory's anproach to the
problem.
3. See also [4].
4. See [3, for a discussion of such extensions.
5. In (9] a comprehenstive survey of the area 1is given,
§
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